Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica.

نویسندگان

  • Nobukazu Shitan
  • Ingrid Bazin
  • Kazuyuki Dan
  • Kazuaki Obata
  • Koji Kigawa
  • Kazumitsu Ueda
  • Fumihiko Sato
  • Cyrille Forestier
  • Kazufumi Yazaki
چکیده

Alkaloids comprise one of the largest groups of plant secondary metabolites. Berberine, a benzylisoquinoline alkaloid, is preferentially accumulated in the rhizome of Coptis japonica, a ranunculaceous plant, whereas gene expression for berberine biosynthetic enzymes has been observed specifically in root tissues, which suggests that berberine synthesized in the root is transported to the rhizome, where there is high accumulation. We recently isolated a cDNA encoding a multidrug-resistance protein (MDR)-type ATP-binding cassette (ABC) transporter (Cjmdr1) from berberine-producing cultured C. japonica cells, which is highly expressed in the rhizome. Functional analysis of Cjmdr1 by using a Xenopus oocyte expression system showed that CjMDR1 transported berberine in an inward direction, resulting in a higher accumulation of berberine in Cjmdr1-injected oocytes than in the control. Typical inhibitors of ABC proteins, such as vanadate, nifedipine, and glibenclamide, as well as ATP depletion, clearly inhibited this CjMDR1-dependent berberine uptake, suggesting that CjMDR1 functioned as an ABC transporter. Conventional membrane separation methods showed that CjMDR1 was localized in the plasma membrane of C. japonica cells. In situ hybridization indicated that Cjmdr1 mRNA was expressed preferentially in xylem tissues of the rhizome. These findings strongly suggest that CjMDR1 is involved in the translocation of berberine from the root to the rhizome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica.

Alkaloids comprise one of the largest groups of plant secondary metabolites. Many of them exhibit strong biological activities, and, in most cases, they are accumulated in the central vacuole of alkaloid-producing plants after synthesis. However, the mechanisms involved in alkaloid transport across the tonoplast are only poorly understood. In this study, we analyzed the vacuolar transport mecha...

متن کامل

Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein.

Cultured Coptis japonica cells are able to take up berberine, a benzylisoquinoline alkaloid, from the medium and transport it exclusively into the vacuoles. Uptake activity depends on the growth phase of the cultured cells whereas the culture medium had no effect on uptake. Treatment with several inhibitors suggested that berberine uptake depended on the ATP level. Some inhibitors of P-glycopro...

متن کامل

The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance

Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette...

متن کامل

Two B-type ATP-binding cassette (ABC) transporters localize to the plasma membrane in Thalictrum minus

Alkaloids play important roles in plant defenses against herbivores and some alkaloids have medicinal uses. Medicinal alkaloids can be purified from plant tissues or produced axenically in cell culture systems. In culture, cells generally accumulate these toxic metabolites in the vacuole; however, treatment with benzyladenine (BA) induces cultured Thalictrum minus cells to produce the isoquinol...

متن کامل

Effects of Salinispora derived metabolites against multidrug resistance, an in-silico study

Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2003